## RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. THIRD SEMESTER EXAMINATION, DECEMBER 2013

**SECOND YEAR** 

**Computer Science (Honours)** 

Date : 14/12/2013 Time : 11 am – 3 pm

Paper : III

Full Marks: 75

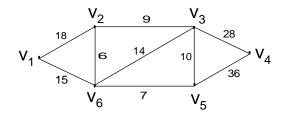
 $(1 \times 10)$ 

(3)

(3)

(2)

(3)


 $(1 \times 15)$ 

## (Use separate answer book for each group)

## Group – A

Answer **any one** question out of question no. 1 - 2.

- 1. a) Define walk, path and circuit with suitable example.
  - Prove that a simple graph with n vertices and k components cannot have more than b)  $\frac{(n-k)(n-k+1)}{2}$  edges. (4)
  - How many extra bridges would be necessary to build in koinsberg bridge so that an Euler cycle c) would exist? Illustrate.
- 2. If a connected planar graph G has n vertices, e edges and r regions, then prove that n - e + r = 2. (3) a)
  - b) Apply Dijkstra's Algorithm to find the shortest path from the vertex v<sub>1</sub> to v<sub>4</sub> in the following graph. (5)



c) What do you mean by isolated vertex and pendant vertex ?

Answer **any one** question out of question no. 3 - 4.

For the four sets A, B, C and D. Confirm or disprove the following identities : 3. a)

 $(A-B)\times(C-D) = (A\times C) - (B\times D).$ 

- Determine the number of integers between 1 and 200, that are not divisible by any of the b) integers 2, 3 and 5. (4)
- Let the function  $f : R \rightarrow R$  be defined by c)

$$f(x) = \begin{cases} 3x - 2 & \text{for } x > 3\\ 2x^2 + 3 & \text{for } -2 < x \le 3\\ 3x^2 - 7 & \text{for } x \le -2 \end{cases}$$

Find  $f^{-1}(5)$ .

- d) Define poset.
- Draw the Hasse-diagram for the poset  $(P(S), \subseteq)$ , P(S) is the power set on  $S = \{a, b, c\}$ . e)
- How many solutions are there of x + y + z = 17, subject to the constraint  $x \ge 1$ ,  $y \ge 2$  and  $z \ge 3$ . (3) 4. a) (2)
  - b) Give the statement of Poisson distribution.
  - In a test, an examiner either guesses or copies or knows the answer to multiple choice question c) with four choices, only one answer being correct. The probability that he makes a guess is  $\frac{1}{3}$ and probability that he copies the answer is  $\frac{1}{6}$ . The probability that his answer is correct,

(3)

(2)

(3)

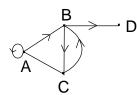
given that he copies it, is  $\frac{1}{8}$ . Find the probability that he knew the answer to the question, given that he correctly answers it.

d) Find a recurrence relation and give initial conditions for the number of bit strings (made by binary digits) of length n that do not contain the pattern 11.
 Hence , find the explicit solution of that recurrence relation. (3+3)

- 5. Answer **any two** questions from the following :
  - a) Consider be whose productions are

 $S \rightarrow aAS / a$ ,

 $A \rightarrow SbA/SS/ba$ 


Show that  $S \rightarrow$  aabbaa by constructing a derivation tree by rightmost derivation which yields aabbaa.

- b) Represent the set of all strings over  $\{x, y\}$  which ends with xx & begins with y.
- c) Prove that  $(1 + 00^*1) + (1 + 00^*1)(0 + 10^*1)^*(0 + 10^*1) = 0^*1(0 + 10^*1)^*$ .
- d) Construct a non-deterministic finite automata, which accepts the set of all strings over  $\{0, 1\}$  ending with 010.

Answer any two questions from the following :

- 6. a) Distinguish between context free & context sensitive grammar.
  - b) Construct a deterministic finite automata accepting all strings over {a, b} ending with aba or aaba. (7)
- 7. a) Define non-deterministic finite automata.
  - b) Construct a context-free grammar to generate  $\{a^m b^n | 1 \le m \le n\}$ .
  - c) Design a Turing machine that accepts the strings over {a, b} containing even numbers of a's. (4)
- 8. a) Define pushdown automata.
  - b) What is the relationship between the linear bounded automata and context-sensitive languages? (2)
  - c) Write a step-by-step procedure to minimize a given finite automata.

- 9. Answer **any two** questions from the following :
  - a) Define Big-theta.
  - b) What are the advantages & disadvantages of Strassen's Matrix Multiplication method?
  - c) Construct the adjacency matrix of the following graph :



Answer **any two** questions from the following :

10. a) Derive an expression to represent time complexity of the following algorithm :

For ( i = 1 to n)  
For ( j = 1 to n)  

$$C[i, j] = 0$$
  
For k = 1 to n  
 $C[i, j] = C[i, j] + A[i, k] * B[k, j]$   
end for  
end for  
end for.

 $(2 \times 2 \frac{1}{2})$ 

(4)

(7) (3)

(4)

(2)

(6)

(3)

 $(2 \times 10)$ 

 $(2 \times 2 \frac{1}{2})$ 

 $(2 \times 10)$ 

| Prove or disprove transitive and reflexive property of Big-theta.                                        | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If $f_1(x) = O(g_1(x))$ and $f_2(x) = O(g_2(x))$ , prove $(f_1 + f_2)(x)$ is $O(\max(g_1(x), g_2(x)))$ . | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Using Master's method, give tight asymptotic bound for the following recurrence :                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $T(n) = 4T\left(\frac{n}{2}\right) + n^2.$                                                               | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Stating appropriate logic, formulate recurrence relation of merge sort.                                  | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Derive complexity of merge sort.                                                                         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| What are the features of dynamic programming?                                                            | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Write an algorithm for finding the Minimum spanning tree of a graph. Derive its time                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| complexity.                                                                                              | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Write an algorithm for BFS over a graph and illustrate with a suitable example.                          | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| What is the incidence matrix representation of graph?                                                    | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| What is the relationship between P & NP problems?                                                        | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                          | If $f_1(x) = O(g_1(x))$ and $f_2(x) = O(g_2(x))$ , prove $(f_1 + f_2)(x)$ is $O(\max(g_1(x), g_2(x)))$ .<br>Using Master's method, give tight asymptotic bound for the following recurrence :<br>$T(n) = 4T\left(\frac{n}{2}\right) + n^2$ .<br>Stating appropriate logic, formulate recurrence relation of merge sort.<br>Derive complexity of merge sort.<br>What are the features of dynamic programming?<br>Write an algorithm for finding the Minimum spanning tree of a graph. Derive its time complexity.<br>Write an algorithm for BFS over a graph and illustrate with a suitable example.<br>What is the incidence matrix representation of graph? |

## 80<sup>余</sup>Q